
MATLAB® Compiler SDK™
MATLAB® Production Server™ Testing Guide

R2021a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Production Server™ Testing Guide
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)
September 2020 Online only Revised for Version 6.9 (Release R2020b)
March 2021 Online only Revised for Version 6.10 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Deployable Archive Creation
1

Create Deployable Archive for MATLAB Production Server . . . . . . . . . . . . 1-2
Create MATLAB Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Create Deployable Archive with Production Server Compiler App . . . . . . . 1-2
Customize Application and Its Appearance . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Package Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Create and Install a Deployable Archive with Excel Integration For
MATLAB Production Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Create Function In MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Create Deployable Archive with Excel Integration Using Production Server

Compiler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Customize the Application and Its Appearance . . . . . . . . . . . . . . . . . . . . . 1-6
Package the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Install the Deployable Archive with Excel Integration . . . . . . . . . . . . . . . . 1-8

MATLAB Production Server Integration Testing
2

Write a Test Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Test Client Data Integration Against MATLAB . . . . . . . . . . . . . . . . . . . . . . 2-3
Create a MATLAB Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Prepare for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Test Using RESTful API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Testing Using Java Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

MATLAB Production Server Excel Add-In
3

Data Marshaling Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Default Marshaling Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Change Rules for Marshaling Data into MATLAB . . . . . . . . . . . . . . . . . . . 3-2
Change Rules for Marshaling Data into Excel . . . . . . . . . . . . . . . . . . . . . . 3-2

iii

Contents



MATLAB Production Server Excel Add-In
4

XLA File Not Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Server Configuration Add-in Not Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Error Using a Variable Number of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Functions
5

Apps
6

Client Programming
7

Create a Java Client Using the MWHttpClient Class . . . . . . . . . . . . . . . . . 7-2

Create a C# Client Using MWHttpClient . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5

Create a Python Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Create a C++ Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

RESTful API JSON Encode and Decode Functions
8

Persistence Functions
9

iv Contents



Deployable Archive Creation

1



Create Deployable Archive for MATLAB Production Server
Supported platform: Windows®, Linux®, Mac

This example shows how to create a deployable archive from a MATLAB function. You can then give
the generated archive to a system administrator to deploy it on the MATLAB Production Server
environment.

Create MATLAB Function
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
     2     8    14
     4    10    16
     6    12    18

Create Deployable Archive with Production Server Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Production Server Compiler. In the Production Server Compiler project
window, click Deployable Archive (.ctf).

Alternatively, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the main file of the MATLAB application
that you want to deploy.

1
In the Exported Functions section, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

1 Deployable Archive Creation

1-2



Click Open.

The function addmatrix.m is added to the list of main files.

Customize Application and Its Appearance
You can customize your deployable archive, and add more information about the application as
follows:

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required to run the

generated archive. These files are included in the generated archive installer. See “Manage
Required Files in Compiler Project”.

• Files packaged for redistribution — Files that are installed with your archive. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application”.
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions. See “MATLAB Function Signatures in JSON”.

Package Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

 Create Deployable Archive for MATLAB Production Server

1-3



2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the archive archiveName.ctf
• for_testing — Folder containing the raw generated files to create the installer
• PackagingLog.txt — Log file generated by MATLAB Compiler™

See Also
deploytool | mcc | productionServerCompiler

More About
• Production Server Compiler
• “MATLAB Function Signatures in JSON”

1 Deployable Archive Creation

1-4



Create and Install a Deployable Archive with Excel Integration
For MATLAB Production Server

Supported platform: Windows

This example shows how to create a deployable archive with Excel integration from a MATLAB
function. You can then give the generated archive to a system administrator to deploy on MATLAB
Production Server.

Create Function In MATLAB
In MATLAB, examine the MATLAB program that you want to package.

For this example, write a function mymagic.m as follows.

function y = mymagic(x)

y = magic(x);

At the MATLAB command prompt, enter mymagic(3).

The output is:

 ans =
     8     1     6
     3     5     7
     4     9     2

Create Deployable Archive with Excel Integration Using Production
Server Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Production Server Compiler. In the MATLAB Compiler SDK project
window, click Deployable Archive with Excel integration.

Alternatively, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the files of the MATLAB application that
you want to deploy.

1
In the Exported Functions section, click .

 Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server

1-5



2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

The function mymagic.m is added to the list of main files.

Customize the Application and Its Appearance
You can customize your deployable archive with Excel integration, and add more information about
the application as follows:

• Archive information — Editable information about the deployed archive with Excel integration.
• Client configuration — Configure the MATLAB Production Server client. Select the Default

Server URL, decide wait time-out, and maximum size of response for the client, and provide an
optional self-signed certificate for https.

• Additional files required for your archive to run — Additional files required by the generated
archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project”.

• Files installed with your archive — Files that are installed with your archive on the client and
server. The files installed on the server include:

• Generated deployable archive (.ctf)
• Generated readme.txt

The files installed on the client include:

• mymagic.bas
• mymagic.dll
• mymagic.xla
• readme.txt
• ServerConfig.dll

See “Specify Files to Install with Application”.
• Options — The option Register the resulting component for you only on the development

machine exclusively registers the packaged component for one user on the development
machine.

1 Deployable Archive Creation

1-6



Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

 Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server

1-7



2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — Folder containing the installer to distribute the archive on the
MATLAB Production Server client and server

• for_redistribution_files_only — Folder containing the files required for
redistributing the application on the MATLAB Production Server client and server

• for_testing — Folder containing the raw generated files to create the installer
• PackagingLog.txt — Log file generated by MATLAB Compiler

Install the Deployable Archive with Excel Integration
The archive must be deployed to a MATLAB Production Server instance before the add-in works.

To install the deployable archive on a server instance:

1 Locate the archive in the for_redistribution_files_only\server\ folder.

The file name is similar to archiveName.ctf.
2 Copy the archive file to the auto_deploy folder of the server instance. The server instance

automatically deploys it and makes it available to interested clients.

For more information, see “MATLAB Production Server” documentation.

See Also
productionServerCompiler

1 Deployable Archive Creation

1-8



MATLAB Production Server Integration
Testing

• “Write a Test Client” on page 2-2
• “Test Client Data Integration Against MATLAB” on page 2-3

2



Write a Test Client
Integration testing with the MATLAB embedded server instance requires a client that calls the
compiled MATLAB functions. The client can be coded using any of the MATLAB Production Server
client APIs.

At a minimum, the client must:

1 Instantiate the client runtime.
2 Connect to the embedded server instance using the port specified in the Production Server

Compiler app.
3 Call the functions being tested with appropriate data.

For information on writing client code, see:

• “Create a Java Client Using the MWHttpClient Class” on page 7-2
• “Create a C# Client Using MWHttpClient” on page 7-5
• “Create a Python Client” on page 7-8
• “Create a C++ Client” on page 7-9

2 MATLAB Production Server Integration Testing

2-2



Test Client Data Integration Against MATLAB
In this section...
“Create a MATLAB Function” on page 2-3
“Prepare for Testing” on page 2-3
“Test Using RESTful API” on page 2-6
“Testing Using Java Client Application” on page 2-10

This example shows you how to test your RESTful API or Java® client for deployment against MATLAB
Production Server using the testing interface in the Production Server Compiler app. For testing
purposes, you will create and use MATLAB function called addmatrix that accepts two numeric
matrices as inputs and returns their sum as an output.

The testing interface can be accessed by clicking the Test Client button in the Production Server
Compiler app. The Production Server Compiler app is part of MATLAB Compiler SDK.

Create a MATLAB Function
1 Write a MATLAB function called addmatrix that accepts two numeric matrices as inputs and

returns their sum as an output. Save this file as addmatrix.m.

addmatrix.m

function a = addmatrix(a1, a2)
a = a1 + a2;

2 Test the function at the MATLAB command prompt.

a = [10 20 30; 40 50 60];
b = [100 200 300; 400 500 600];
c = addmatrix(a,b)

c =

   110   220   330
   440   550   660

Prepare for Testing
1 Open the Production Server Compiler app by typing the following at the MATLAB command

prompt:

productionServerCompiler

 Test Client Data Integration Against MATLAB

2-3



2 In the Type section of the toolstrip, select Deployable Archive (.ctf) from the list.
3 Specify the MATLAB functions to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b Using the file explorer, locate and select the addmatrix.m file.

4 In the section titled Include MATLAB function signature file, click the Create File button.
This will create an editable JSON file that contains the function signatures of the functions
included in the archive. By editing this file you can specify argument types and/or sizes of inputs
and outputs, and also provide help information for each of the inputs. For more information, see
“MATLAB Function Signatures in JSON” (MATLAB Production Server).

If you have an existing JSON file with function signatures, click the Add Existing File button to
add that file instead of the Create File button.

By including this information in your archive, you can use the discovery service functionality on
the server.

Note Only the MATLAB Production Server RESTful API supports the discovery service. For more
information, see “RESTful API” (MATLAB Production Server).

2 MATLAB Production Server Integration Testing

2-4



5 Click the Test Client button. The app will switch to the TEST tab.

a Check the value of the Port field.

It must be:

• an available port
• the same port number the client is using

For this example, the client will use port 9910.

 Test Client Data Integration Against MATLAB

2-5



b Check the box to Enable CORS. This option needs to be enabled if you are using a client
that uses JavaScript®. By enabling CORS the server will accept requests from different
domains.

c Check the box to Enable Discovery. This option needs to be enabled to use the discovery
service. The discovery service returns information about deployed MATLAB functions as a
JSON object.

6 Click Start.

Test Using RESTful API
This example uses the MATLAB “HTTP Interface” to invoke the RESTful API and make requests to the
testing interface. You can use other tools such cURL or JavaScript XHR.

The testing interface does not support asynchronous client requests. The interface processes a POST
Asynchronous Request (MATLAB Production Server) like a POST Synchronous Request (MATLAB
Production Server). Other asynchronous requests from the RESTful API are not supported.

Test Discovery Service

1 Import the MATLAB HTTP Interface packages, setup the request, and send the request to the
testing interface.

% Import MATLAB HTTP Interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup request
requestUri = URI('http://localhost:9910/api/discovery');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
    'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'GET';

% Send request
response = request.send(requestUri, options);

2 View the response body.

response.Body.Data

ans = 

    "{"discoverySchemaVersion":"1.0.0","archives":{"matfun":{"archiveSchemaVersion":"1.1.0",...

The response body has been snipped to fit the page. A formatted version of the response body
can be found by expanding ans.

ans

{
  "discoverySchemaVersion": "1.0.0",
  "archives": {
    "matfun": {
      "archiveSchemaVersion": "1.1.0",
      "archiveUuid": "",

2 MATLAB Production Server Integration Testing

2-6



      "functions": {
        "addmatrix": {
          "signatures": [
            {
              "help": "",
              "inputs": [
                {
                  "help": "input matrix 1",
                  "mwsize": [],
                  "mwtype": "double",
                  "name": "a1"
                },
                {
                  "help": "input matrix 2",
                  "mwsize": [],
                  "mwtype": "double",
                  "name": "a2"
                }
              ],
              "outputs": [
                {
                  "help": "output matrix",
                  "mwsize": [],
                  "mwtype": "double",
                  "name": "a"
                }
              ]
            }
          ]
        }
      },
      "matlabRuntimeVersion": "9.6.0"
    }
  }
}

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Discovery Service

var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
  if (this.readyState === 4) {
    console.log(this.responseText);
  }
});
xhr.open("GET", "http://localhost:9910/api/discovery");
xhr.send(data);

Testing Data Exchange

1 Start a separate session of the MATLAB desktop. This is because you cannot send a POST
request from the same MATLAB session that is running the testing interface.

2 Import the MATLAB HTTP Interface packages, setup the request, and send the request to the
testing interface.

 Test Client Data Integration Against MATLAB

2-7



% Import HTTP interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup message body
body = MessageBody;
a = [10 20 30; 40 50 60];
b = [100 200 300;400 500 600];
payload = mps.json.encoderequest({a,b});
body.Payload = payload;

% Setup request
requestUri = URI('http://localhost:9910/matfun/addmatrix');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
    'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'POST';
request.Body = body;

% Send request
response = request.send(requestUri, options)

3 View the response body.

response.Body.Data

ans = 

    "{"lhs":[[[110,220,330],[440,550,660]]]}"

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Data Exchange

var data = JSON.stringify({
  "rhs": [[[10,20,30],[40,50,60]],[[100,200,300],[400,500,600]]],
  "nargout": 1,
  "outputFormat": {
    "mode": "small",
    "nanType": "string"
  }
});
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
  if (this.readyState === 4) {
    console.log(this.responseText);
  }
});
xhr.open("POST", "http://localhost:9910/matfun/addmatrix");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.send(data);

Examine Data

1 Switch to the Production Server Compiler app.

2 MATLAB Production Server Integration Testing

2-8



2 In the testing interface, under MATLAB Execution Requests, click the completed message in
the app to see the values exchanged between the client and MATLAB.

3 Click Input to view the arrays passed into MATLAB.
4 Click Output to view the array returned to the client.

Set Breakpoints

1 In the testing interface of the Production Server Compiler, click Breakpoints > Break on
MATLAB function entry.

2 In the separate MATLAB session, resend a POST request to the server.
3 When the MATLAB editor opens, note that a breakpoint is set at the first line in the function and

that processing has paused at the breakpoint.

You now can use all of the MATLAB debugging tools to step through your function.

Note You can create a timeout error in the client if you take a long time stepping through the
MATLAB function.

4 Note that variables a1 and a2 are displayed in the MATLAB workspace.

 Test Client Data Integration Against MATLAB

2-9



5 In the MATLAB editor, click Continue to complete the debug process.

The Server Requests section of the app shows that the request completed successfully.
6 Click Stop to shutdown the test server.
7 Click Close Test.

Testing Using Java Client Application
1 Create a Java file MPSClientExample.java with following client code:

MPSClientExample.java
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix 
  {
    double[][] addmatrix(double[][] a1, double[][] a2)
         throws MATLABException, IOException;
  }

public class MPSClientExample {
    
    public static void main(String[] args){
    
        double[][] a1={{1,2,3},{3,2,1}};
        double[][] a2={{4,5,6},{6,5,4}};
        
        MWClient client = new MWHttpClient();
        
        try{
            MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
                                                MATLABAddMatrix.class);
            double[][] result = m.addmatrix(a1,a2);
            
            // Print the magic square

            printResult(result);
            
        }catch(MATLABException ex){
        
            // This exception represents errors in MATLAB 
               System.out.println(ex);            
        }catch(IOException ex){
        
            // This exception represents network issues. 
               System.out.println(ex);                    
        }finally{
        
            client.close();        
        }
    }
    
    private static void printResult(double[][] result){
        for(double[] row : result){
            for(double element : row){
                System.out.print(element + " ");
            }
            System.out.println();
        }        
    }
}

2 At the system command prompt, compile the Java client code using the javac command.
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample.java

3 At the system command prompt, run the Java client.
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample

Note You cannot run the Java client from the MATLAB command prompt.

2 MATLAB Production Server Integration Testing

2-10



The application returns the following at the console:

   110.0   220.0   330.0
   440.0   550.0   660.0

You can debug the data exchanged between the client and MATLAB using the same steps listed
under “Test Using RESTful API” on page 2-6.

See Also

Related Examples
• “Write a Test Client” on page 2-2
• “Package Deployable Archives with Production Server Compiler App”

 Test Client Data Integration Against MATLAB

2-11





MATLAB Production Server Excel Add-In

3



Data Marshaling Rules

In this section...
“Default Marshaling Rules” on page 3-2
“Change Rules for Marshaling Data into MATLAB” on page 3-2
“Change Rules for Marshaling Data into Excel” on page 3-2

Default Marshaling Rules
These types of data do not have natural mappings between MATLAB and Excel:

• Dates: Excel has a special data type for dates, and MATLAB does not.
• Blank cells: MATLAB has no equivalent construct for a blank cell in an Excel spread sheet.

If you do not change the marshaling rules when compiling the add-in, the rules for marshaling Excel
data into MATLAB are:

• Excel dates are marshaled into MATLAB doubles.
• Empty cells are marshaled into zeros.

If you do not change the marshaling rules when compiling the add-in, the rules for marshaling
MATLAB data into Excel are:

• MATLAB NaNs are marshaled into Visual Basic® #QNANs.
• MATLAB does not return any Excel dates.

Change Rules for Marshaling Data into MATLAB
You can change how dates and empty cells are marshaled into MATLAB when compiling the add-in:

• Excel dates can be marshaled as MATLAB character arrays.
• Empty cells can be marshaled as MATLAB NaNs.

To change the marshaling rules:

1 In the class mapper portion of the MATLAB Compiler project window, select the signature of
the function you want to modify.

2 Select Data Conversion Properties from the context menu.
3 Select the input argument rules to change.
4 Click outside of the dialog box to close it.

Change Rules for Marshaling Data into Excel
You can change how dates and NaNs are marshaled into Excel when compiling the add-in:

• MATLAB NaNs can be converted into zeros.
• MATLAB numeric values can be converted into Excel dates.

3 MATLAB Production Server Excel Add-In

3-2



Note To see a date in the expected format, ensure that the Excel cell is formatted to display its
contents in a date format.

To change the marshaling rules:

1 In the class mapper portion of the MATLAB Compiler project window, select the signature of
the function you want to modify.

2 Select Data Conversion Properties from the context menu.
3 Select the output argument rules to change.
4 Click outside of the dialog box to close it.

See Also

 Data Marshaling Rules

3-3





MATLAB Production Server Excel Add-In

4



XLA File Not Generated
The compiler may not generate the projName.xla file for various reasons, including that Excel is
not configured to trust access to the VBA project object model. When this happens, you can install the
add-in by importing the projName.bas file into the workbook’s Visual Basic project.

4 MATLAB Production Server Excel Add-In

4-2



Server Configuration Add-in Not Enabled
If your trust settings in Excel are configured to either disable all add-ins or to require add-ins to be
published by a trusted publisher, it is possible that the Configure MATLAB Production Server add-
in is not available after installation. In most cases, the add-in is installed but disabled.

To check if the add-in is installed in Excel:

1 Select File>Options.
2 Select Add-Ins.
3 Look for ServerConfig.Connect in the list of disabled add-ins.

You can enable the add-in by adjusting the trust settings in Excel.

 Server Configuration Add-in Not Enabled

4-3



Error Using a Variable Number of Outputs
If your add-in throws the error:

Error in myfunc: Object reference not set to an instance of an object

The likely cause is that the MATLAB function used by the add-in returns a variable number of
outputs.

Add-ins using code run on a MATLAB Production Server instance do not support MATLAB functions
that return a variable number of outputs. You can either rewrite your MATLAB function to return a
fixed number of outputs, or you can create an add-in that runs locally to your Excel installation.

4 MATLAB Production Server Excel Add-In

4-4



Functions

5



compiler.build.productionServerArchive
Create an archive for deployment to MATLAB Production Server

Syntax
compiler.build.productionServerArchive(FunctionFiles)
compiler.build.productionServerArchive(FunctionFiles,Name,Value)
compiler.build.productionServerArchive(opts)
results = compiler.build.productionServerArchive( ___ )

Description
compiler.build.productionServerArchive(FunctionFiles) creates a deployable archive
using the MATLAB functions specified by FunctionFiles.

compiler.build.productionServerArchive(FunctionFiles,Name,Value) creates a
deployable archive with additional options specified using one or more name-value arguments.
Options include the archive name, JSON function signatures, and output directory.

compiler.build.productionServerArchive(opts) creates a deployable archive with options
specified using a compiler.build.ProductionServerArchiveOptions object opts. You cannot
specify any other options using name-value arguments.

results = compiler.build.productionServerArchive( ___ ) returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, the path to the compiled archive, and build
options.

Examples

Create Production Server Archive

Create a deployable server archive.

In MATLAB, locate the MATLAB function that you want to deploy as an archive. For this example, use
the file magicsquare.m located in matlabroot\extern\examples\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');

Build a production server archive using the compiler.build.productionServerArchive
command.
compiler.build.productionServerArchive(appFile);

This syntax generates the following files within a folder named
mymagicproductionServerArchive in your current working directory:

• mymagic.ctf — Deployable production server archive file.
• mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not

included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations.

5 Functions

5-2



• readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

• requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Customize Production Server Archive

Create a production server archive and customize it using name-value arguments.

Build a production server archive using the compiler.build.productionServerArchive
command. Use name-value arguments to specify the archive name and add a JSON signature file.
compiler.build.productionServerArchive(["myfunc1.m","myfunc2.m"],...
    'ArchiveName','MagicApp',...
    'FunctionSignatures','signatures.json');

Create Multiple Production Server Archives Using Options Object

Customize multiple production server archives using a
compiler.build.ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using example.m. Use name-value
arguments to specify a common output directory, disable automatically including data files, and
enable verbose output.
opts = compiler.build.ProductionServerArchiveOptions('example.m',...    
    'OutputDir','D:\Documents\MATLAB\work\ProductionServerBatch',...
    'AutoDetectDataFiles','off',...
    'Verbose','on');

opts = 

  ProductionServerArchiveOptions with properties:

            ArchiveName: 'example'
          FunctionFiles: {'D:\Documents\MATLAB\work\example.m'}
     FunctionSignatures: ''
        AdditionalFiles: {}
    AutoDetectDataFiles: off
                Verbose: on
              OutputDir: 'D:\Documents\MATLAB\work\ProductionServerBatch'

Build the production server archive using the ProductionServerArchiveOptions object.
compiler.build.productionServerArchive(opts);

To compile using the function file example2.m with the same options, use dot notation to modify the
FunctionFiles of the existing ProductionServerArchiveOptions object before running the
build function again.
opts.FunctionFiles = 'example2.m';
compiler.build.productionServerArchive(opts);

By modifying the FunctionFiles argument and recompiling, you can compile multiple archives
using the same options object.

 compiler.build.productionServerArchive

5-3



Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, and build
options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.productionServerArchive(magicsquare.m')

results = 

  Results with properties:

            BuildType: 'productionServerArchive'
                Files: 'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magicsquare.ctf'
              Options: [1×1 compiler.build.ProductionServerArchiveOptions]

The Files property contains the path to the deployable archive file magicsquare.ctf.

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

opts — Production server options object
compiler.build.ProductionServerArchiveOptions object

Production server archive build options, specified as a
compiler.build.ProductionServerArchiveOptions object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

5 Functions

5-4



Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON” (MATLAB Production Server).
Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

 compiler.build.productionServerArchive

5-5



Output Arguments
results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object consists of:

• Build type, which is 'productionServerArchive'
• Path to the deployable archive file
• Build options, specified as a ProductionServerArchiveOptions object

See Also
compiler.build.ProductionServerArchiveOptions | compiler.build.Results |
productionServerCompiler

Introduced in R2020b

5 Functions

5-6



compiler.build.ProductionServerArchiveOptions
Options for building deployable archives

Syntax
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles)
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value)

Description
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles) creates a
ProductionServerArchiveOptions object using the MATLAB functions specified by
FunctionFiles. Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function.

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value) creates a ProductionServerArchiveOptions object with options specified using
one or more name-value arguments. Options include the archive name, output directory, and
additional files to include.

Examples

Create Deployable Archive Options Object

Create a ProductionServerArchiveOptions object from a function file.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.
appFile = fullfile(matlabroot,'extern','examples','compiler','magicsquare.m');
opts = compiler.build.ProductionServerArchiveOptions(appFile)

opts = 

  ProductionServerArchiveOptions with properties:

            ArchiveName: 'magicsquare'
          FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
     FunctionSignatures: ''
        AdditionalFiles: {}
    AutoDetectDataFiles: on
              OutputDir: '.\magicsquareproductionServerArchive'
                Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts = 

 compiler.build.ProductionServerArchiveOptions

5-7



  ProductionServerArchiveOptions with properties:

            ArchiveName: 'magicsquare'
          FunctionFiles: {'C:\Program Files\MATLAB\R2021a\extern\examples\compiler\magicsquare.m'}
     FunctionSignatures: ''
        AdditionalFiles: {}
    AutoDetectDataFiles: on
              OutputDir: '.\magicsquareproductionServerArchive'
                Verbose: on

Use the DotNETAssemblyOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.
compiler.build.productionServerArchive(opts);

Customize Deployable Archive Options Object

Create a production server archive using a ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using the function files myfunc1.m and
myfunc2.m. Use name-value arguments to specify the output directory, enable verbose output, and
disable automatic detection of data files.
opts = compiler.build.ProductionServerArchiveOptions(["myfunc1.m","myfunc2.m"],...
    'ArchiveName','MyServer',...
    'OutputDir','D:\Documents\MATLAB\work\ProductionServer',...
    'AutoDetectDataFiles','off')

opts = 

  ProductionServerArchiveOptions with properties:

            ArchiveName: 'MyServer'
          FunctionFiles: {2×1 cell}
     FunctionSignatures: ''
        AdditionalFiles: {}
    AutoDetectDataFiles: off
              OutputDir: 'D:\Documents\MATLAB\work\ProductionServer'
                Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.
opts.Verbose = 'on'

opts = 

  ProductionServerArchiveOptions with properties:

            ArchiveName: 'MyServer'
          FunctionFiles: {2×1 cell}
     FunctionSignatures: ''
        AdditionalFiles: {}
    AutoDetectDataFiles: off
              OutputDir: 'D:\Documents\MATLAB\work\ProductionServer\'
                Verbose: on

Use the ProductionServerArchiveOptions object as an input to the function to build a
production server archive.

5 Functions

5-8



buildResults = compiler.build.productionServerArchive(opts);

Input Arguments
FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.
Example: ["myfunc1.m","myfunc2.m"]
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose','on'

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.
Example: 'ArchiveName','MyMagic'
Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off', or as numeric or logical 1 (true)
or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

• If you set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles','off'
Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON” (MATLAB Production Server).

 compiler.build.ProductionServerArchiveOptions

5-9



Example: 'FunctionSignatures','D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir','D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

• If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose','off'
Data Types: logical

Output Arguments
opts — Production server archive build options
ProductionServerArchiveOptions object

Production server archive build options, returned as a ProductionServerArchiveOptions object.

See Also
productionServerCompiler

Introduced in R2020b

5 Functions

5-10



compiler.build.Results
Compiler build results object

Description
A compiler.build.Results object contains information about the build type, generated files, and
build options of a compiler.build function.

All Results properties are read-only. You can use dot notation to query these properties.

For information on results from compiling standalone applications, Excel add-ins, or web app
archives, see compiler.build.Results for MATLAB Compiler.

Creation
There are several ways to create a compiler.build.Results object.

• Create a production server archive using compiler.build.productionServerArchive
(example on page 5-13).

• Create a COM component using compiler.build.comComponent (example on page 5-14).
• Create a C shared library using compiler.build.cSharedLibrary (example on page 5-14).
• Create a C++ shared library using compiler.build.cppSharedLibrary (example on page 5-

14).
• Create a .NET assembly using compiler.build.dotNETAssembly (example on page 5-15).
• Create a Java package using compiler.build.javaPackage (example on page 5-15).
• Create a Python® package using compiler.build.pythonPackage (example on page 5-16).

Properties
BuildType — Build type
'productionServerArchive' | 'comComponent' | 'cSharedLibrary' | 'cppSharedLibrary'
| 'dotNETAssembly' | 'javaPackage' | 'pythonPackage'

This property is read-only.

The build type of the compiler.build function used to generate the results, specified as a
character vector:

compiler.build Function Build Type
compiler.build.productionServerArchive 'productionServerArchive'
compiler.build.comComponent 'comComponent'
compiler.build.cSharedLibrary 'cSharedLibrary'
compiler.build.cppSharedLibrary 'cppSharedLibrary'

 compiler.build.Results

5-11



compiler.build Function Build Type
compiler.build.dotNETAssembly 'dotNETAssembly'
compiler.build.javaPackage 'javaPackage'
compiler.build.pythonPackage 'pythonPackage'

Data Types: char

Files — Paths to compiled files
cell array of character vectors

This property is read-only.

Paths to the compiled files of the compiler.build function used to generate the results, specified
as a cell array of character vectors.

Build Type Files
'productionServerArchive' 1×1 cell array

    {'path\to\ArchiveName.ctf'}

'comComponent' 2×1 cell array

    {'path\to\ComponentName_ComponentVersion.dll'}
    {'path\to\GettingStarted.html'}

'cSharedLibrary' 4×1 cell array

    {'path\to\LibraryName.h'}
    {'path\to\LibraryName.dll'}
    {'path\to\LibraryName.lib'}
    {'path\to\GettingStarted.html'}

'cppSharedLibrary' 2×1 or 4×1 cell array

Using the matlab-data interface:

    {'path\to\v2\'}    
    {'path\to\GettingStarted.html'}

Using the mwArray interface:

    {'path\to\LibraryName.h'}
    {'path\to\LibraryName.dll'}
    {'path\to\LibraryName.lib'}
    {'path\to\GettingStarted.html'}

'dotNETAssembly' 4×1 cell array

    {'path\to\AssemblyName.dll'}
    {'path\to\AssemblyNameNative.dll'}
    {'path\to\AssemblyName_overview.html'}
    {'path\to\GettingStarted.html'}

'javaPackage' 3×1 cell array

    {'path\to\PackageName.jar'}
    {'path\to\doc\'}
    {'path\to\GettingStarted.html'}

5 Functions

5-12



Build Type Files
'pythonPackage' 3×1 cell array

    {'path\to\example\'}
    {'path\to\setup.py'}
    {'path\to\GettingStarted.html'}

Example: {'D:\Documents\MATLAB\work\MagicSquareproductionServerArchive
\MagicSquare.ctf'}

Data Types: cell

Options — Build options
ProductionServerArchiveOptions | COMComponentOptions | CSharedLibraryOptions |
CppSharedLibraryOptions | DotNETAssemblyOptions | JavaPackageOptions |
PythonPackageOptions

This property is read-only.

Build options of the compiler.build function used to generate the results, specified as an options
object of the corresponding build type.

Build Type Options
'productionServerArchive' ProductionServerArchiveOptions
'comComponent' COMComponentOptions
'cSharedLibrary' CSharedLibraryOptions
'cppSharedLibrary' CppSharedLibraryOptions
'dotNETAssembly' DotNETAssemblyOptions
'javaPackage' JavaPackageOptions
'pythonPackage' PythonPackageOptions

Examples

Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, and build
options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.productionServerArchive(magicsquare.m')

results = 

  Results with properties:

            BuildType: 'productionServerArchive'
                Files: 'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magicsquare.ctf'
              Options: [1×1 compiler.build.ProductionServerArchiveOptions]

 compiler.build.Results

5-13



The Files property contains the path to the deployable archive file magicsquare.ctf.

Get Build Information from COM Component

Create a COM component on a Windows system and save information about the build type, generated
files, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.comComponent('magicsquare.m')

results = 

  Results with properties:

            BuildType: 'comComponent'
                Files: {2×1 cell}
              Options: [1×1 compiler.build.COMComponentOptions]

The Files property contains the paths to the following compiled files:

• magicsquare_1_0.dll
• GettingStarted.html

Get Build Information from C Library

Create a C library and save information about the build type, compiled files, and build options to a
compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.cSharedLibrary('magicsquare.m')

results = 

  Results with properties:

            BuildType: 'cSharedLibrary'
                Files: {4×1 cell}
              Options: [1×1 compiler.build.CSharedLibraryOptions]

The Files property contains the paths to the following files:

• magicsquare.dll
• magicsquare.lib
• magicsquare.h
• GettingStarted.html

Get Build Information from C++ Library

Create a C++ library and save information about the build type, compiled files, and build options to a
compiler.build.Results object.

5 Functions

5-14



Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.cppSharedLibrary('magicsquare.m')

results = 

  Results with properties:

            BuildType: 'cppSharedLibrary'
                Files: {2×1 cell}
              Options: [1×1 compiler.build.CppSharedLibraryOptions]

The Files property contains the paths to the v2 folder and GettingStarted.html.

Get Build Information from .NET Assembly

Create a .NET assembly on a Windows system and save information about the build type, generated
files, and build options to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.dotNETAssembly('magicsquare.m')

results = 

  Results with properties:

            BuildType: 'dotNETAssembly'
                Files: {4×1 cell}
              Options: [1×1 compiler.build.DotNETAssemblyOptions]

The Files property contains the paths to the following compiled files:

• magicsquare.dll
• magicsquareNative.dll
• magicsquare_overview.dll
• GettingStarted.html

Get Build Information from Java Package

Create a Java package and save information about the build type, generated files, and build options to
a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.javaPackage('magicsquare.m')

results = 

  Results with properties:

            BuildType: 'javaPackage'
                Files: {3×1 cell}
              Options: [1×1 compiler.build.JavaPackageOptions]

 compiler.build.Results

5-15



The Files property contains the paths to the following:

• doc folder
• magicsquare.jar
• GettingStarted.html

Get Build Information from Python Package

Create a Python package and save information about the build type, generated files, and build options
to a compiler.build.Results object.

Compile using the file magicsquare.m located in matlabroot\extern\examples\compiler.
results = compiler.build.pythonPackage('magicsquare.m');

results = 

  Results with properties:

            BuildType: 'pythonPackage'
                Files: {3×1 cell}
              Options: [1×1 compiler.build.PythonPackageOptions]

The Files property contains the paths to the following:

• example folder
• setup.py
• GettingStarted.html

See Also
compiler.build.cSharedLibrary | compiler.build.comComponent |
compiler.build.cppSharedLibrary | compiler.build.dotNETAssembly |
compiler.build.javaPackage | compiler.build.productionServerArchive |
compiler.build.pythonPackage

Introduced in R2020b

5 Functions

5-16



productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name

Description
productionServerCompiler opens the Production Server Compiler app for the creation of a new
compiler project.

productionServerCompiler project_name opens the Production Server Compiler app with the
project preloaded.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To generate deployable archives, use the
compiler.build.productionServerArchive function, or the mcc command, or the Production
Server Compiler app.

Introduced in R2014a

 productionServerCompiler

5-17





Apps

6



Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB functions. It
also packages MATLAB functions into archives for deployment to MATLAB Production Server.

6 Apps

6-2



 Production Server Compiler

6-3



Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a deployable archive for MATLAB Production Server”
• “Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

6 Apps

6-4



Folder where files for building a custom installer are stored are stored as a character array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

Programmatic Use
productionServerCompiler

See Also
Topics
“Create a deployable archive for MATLAB Production Server”
“Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”

Introduced in R2013b

 Production Server Compiler

6-5





Client Programming

7



Create a Java Client Using the MWHttpClient Class
This example shows how to write a MATLAB Production Server client using the Java client API. In
your Java code, you will:

• Define a Java interface that represents the MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {
       double[][] addmatrix(double[][] a1, double[][] a2)
         throws MATLABException, IOException;
   } 

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the deployed MATLAB

function.
• The Java method must support the same inputs and outputs supported by the MATLAB

function, in both type and number. For more information about data type conversions and how
to handle more complex MATLAB function signatures, see “Java Client Programming”
(MATLAB Production Server).

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

7 Client Programming

7-2



public static void main(String[] args)
{
} 

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.
8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server instance.
9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface class as
arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
                                       MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy contains
three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

For more information about the createProxy method, see the Javadoc included in the
matlabroot/toolbox/compiler_sdk/mps_client folder.

10 Call the deployed MATLAB function in your Java application by calling the public method of the
interface.

  double[][] result = m.addmatrix(a1,a2);
11 Call the client object’s close() method to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix 
  {
    double[][] addmatrix(double[][] a1, double[][] a2)
         throws MATLABException, IOException;
  }

public class MPSClientExample {
    
    public static void main(String[] args){
    
        double[][] a1={{1,2,3},{3,2,1}};
        double[][] a2={{4,5,6},{6,5,4}};
        
        MWClient client = new MWHttpClient();
        

 Create a Java Client Using the MWHttpClient Class

7-3



        try{
            MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
                                                MATLABAddMatrix.class);
            double[][] result = m.addmatrix(a1,a2);
            
            // Print the resulting matrix
            printResult(result);
            
        }catch(MATLABException ex){
        
            // This exception represents errors in MATLAB 
               System.out.println(ex);            
        }catch(IOException ex){
        
            // This exception represents network issues. 
               System.out.println(ex);                    
        }finally{
        
            client.close();        
        }
    }
    
    private static void printResult(double[][] result){
        for(double[] row : result){
            for(double element : row){
                System.out.print(element + " ");
            }
            System.out.println();
        }        
    }
}

13 Compile the Java application, using the javac command or use the build capability of your Java
IDE.

For example, enter the following:
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following:
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

See Also

More About
• “Bond Pricing Tool for Java Client” (MATLAB Production Server)

7 Client Programming

7-4



Create a C# Client Using MWHttpClient
This example shows how to write a C# application to call a MATLAB function deployed to MATLAB
Production Server. The C# application uses the MATLAB Production Server .NET client library.

A .NET application programmer typically performs this task. The tutorial assumes that you have
Microsoft® Visual Studio® and .NET installed on your computer.

Create Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.
2 Click File > New > Project.
3 In the New Project dialog box, select the template you want to use. For example, if you want to

create a C# console application in Visual Studio 2017, select Visual C# > Windows Desktop in
the left navigation pane, then select the Console App (.Net Framework).

4 Type the name of the project in the Name field (for example, Magic).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by default.

Create Reference to Client Runtime Library

Create a reference in your Magic project to the MATLAB Production Server client runtime library. In
Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right side), right-
click your Magic project, select Add > Browse.

2 Browse to the MATLAB Production Server .NET client runtime library location.

The library is located in matlabroot\toolbox\compiler_sdk\mps_client\dotnet. Select
the MathWorks.MATLAB.ProductionServer.Client.dll file.

The client library is also available for download at https://www.mathworks.com/products/
matlab-production-server/client-libraries.html.

3 Click OK. Your Microsoft Visual Studio project now references the
MathWorks.MATLAB.ProductionServer.Client.dll.

Deploy MATLAB Function to Server

Write a MATLAB function mymagic that uses the magic function to create a magic square, package
mymagic into a deployable archive called mymagic_deployed, then deploy it to a server. The
function mymagic takes a single int input and returns a magic square as a 2-D double array. The
example assumes that the server instance is running at http://localhost:9910.

function m = mymagic(in)
    m = magic(in);

Design .NET Interface in C#

Invoke the deployed MATLAB function mymagic from a .NET client through a .NET interface. Design
a C# interface Magic to match the MATLAB function mymagic.

• The .NET interface has the same number of inputs and outputs as the MATLAB function.
• Since you are deploying one MATLAB function on the server, you define one corresponding .NET

method in your C# code.

 Create a C# Client Using MWHttpClient

7-5

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html


• Both the MATLAB function and the .NET interface process the same data types—input type int
and output type 2-D double.

• In your C# client program, use the interface Magic to specify the type of the proxy object
reference in the CreateProxy method. The CreateProxy method requires the URL to the
deployable archive that contains the mymagic function (http://localhost:9910/
mymagic_deployed) as an input argument.

 public interface Magic 
        {
          double[,] mymagic(int in1);
        }

Write, Build, and Run .NET Application

1 Open the Microsoft Visual Studio project Magic that you created earlier.
2 In the Program.cs tab, paste in the code below.

using System;
using System.Net;
using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic
{
    public class MagicClass
    {

        public interface Magic
        {
            double[,] mymagic(int in1);
        }

        public static void Main(string[] args)
        {
            MWClient client = new MWHttpClient();
            try
            {
                Magic me = client.CreateProxy<Magic>
                          (new Uri("http://localhost:9910/mymagic_deployed"));
                double[,] result1 = me.mymagic(4);
                print(result1);
            }
            catch (MATLABException ex)
            {
                Console.WriteLine("{0} MATLAB exception caught.", ex);
                Console.WriteLine(ex.StackTrace);
            }
            catch (WebException ex)
            {
                Console.WriteLine("{0} Web exception caught.", ex);
                Console.WriteLine(ex.StackTrace);
            }
            finally
            {
                client.Dispose();
            }
            Console.ReadLine();
        }

        public static void print(double[,] x)
        {
            int rank = x.Rank;
            int[] dims = new int[rank];

            for (int i = 0; i < rank; i++)
            {
                dims[i] = x.GetLength(i);
            }

7 Client Programming

7-6



            for (int j = 0; j < dims[0]; j++)
            {
                for (int k = 0; k < dims[1]; k++)
                {
                    Console.Write(x[j, k]);
                    if (k < (dims[1] - 1))
                    {
                        Console.Write(",");
                    }
                }
                Console.WriteLine();
            }
        }
    }
}

The URL value ("http://localhost:9910/mymagic_deployed") used to create the proxy
contains three parts.

• the server address (localhost).
• the port number (9910).
• the archive name (mymagic_deployed).

3 Build the application. Click Build > Build Solution.
4 Run the application. Click Debug > Start Without Debugging. The program returns the

following console output.

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1 

See Also

More About
• “Create a .NET MATLAB Production Server Client” (MATLAB Production Server)
• “Configure the Client-Server Connection” (MATLAB Production Server)
• “Synchronous RESTful Requests Using Protocol Buffers in .NET Client” (MATLAB Production

Server)

 Create a C# Client Using MWHttpClient

7-7



Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python client API. The
client application calls the addmatrix function you compiled in “Package Deployable Archives with
Production Server Compiler App” and deployed in “Share Deployable Archive” (MATLAB Production
Server).

Create a Python MATLAB Production Server client application:

1 Copy the contents of the matlabroot\toolbox\compiler_sdk\mps_clients\python folder
to your development environment.

2 Open a command line,
3 Change directories into the folder where you copied the MATLAB Production Server Python

client.
4 Run the following command.

python setup.py install
5 Start the Python command line interpreter.
6 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

7 Open the connection to the MATLAB Production Server instance and initialize the client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
8 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

9 Call the deployed MATLAB function.

You must know the following:

• Name of the deployed archive
• Name of the function

client_obj.addmatrix.addmatrix(a1,a2)

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

10 Close the client connection.

client_obj.close()

7 Client Programming

7-8



Create a C++ Client
This example shows how to write a MATLAB Production Server client using the C client API. The
client application calls the addmatrix function you compiled in “Package Deployable Archives with
Production Server Compiler App” and deployed in “Share Deployable Archive” (MATLAB Production
Server).

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client.h>

Note The header files for the MATLAB Production Server C client API are located in the
matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps folder. folder.

4 Add the main() method to the application.

int main ( void )
{
} 

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};
double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;
mpsArray** inVal = new mpsArray* [numIn];

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)( mpsGetData(inVal[0]) );
double* data2 = (double *)( mpsGetData(inVal[1]) );

for(int i=0; i<2; i++)
{
  for(int j=0; j<3; j++)
  {
    mpsIndex subs[] = { i, j };
    mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
    data1[id] = a1[i][j];
    data2[id] = a2[i][j];

 Create a C++ Client

7-9



  }
}

9 Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,
    "http://localhost:9910/addmatrix/addmatrix",
    numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included in the
matlabroot/toolbox/compiler_sdk/mps_client folder.

11 Verify that the function call was successful using an if statement.

if (status==MPS_OK)
{
}

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)
{
  for (int j=0; j<3; j++)
  {        
    mpsIndex subs[] = {i, j};
    mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
    std::cout << out[id] << "\t";
  }
  std::cout << std::endl;
}

13 Add an else clause to the if statement to process any errors.

else  
{
  mpsErrorInfo error;
  mpsruntime->getLastErrorInfo(context, &error);
  std::cout << "Error: " << error.message << std::endl;
  switch(error.type)
  {
    case MPS_HTTP_ERROR_INFO:
      std::cout << "HTTP: " << error.details.http.responseCode << ": " 
          << error.details.http.responseMessage << std::endl;
    case MPS_MATLAB_ERROR_INFO:
      std::cout << "MATLAB: " << error.details.matlab.identifier 

7 Client Programming

7-10



          << std::endl;
      std::cout << error.details.matlab.message << std::endl;
    case MPS_GENERIC_ERROR_INFO:
      std::cout << "Generic: " << error.details.general.genericErrorMsg 
          << std::endl;
  }

  mpsruntime->destroyLastErrorInfo(&error);
}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)
  mpsDestroyArray(inVal[i]);
delete[] inVal;

15 Free the memory used by the outputs.

for (int i=0; i<numOut; i++)
  mpsDestroyArray(outVal[i]);
delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>
#include <mps/client.h>

int main ( void )
{
  mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

  mpsClientConfig* config;
  mpsStatus status = mpsruntime->createConfig(&config);

  mpsClientContext* context;
  status = mpsruntime->createContext(&context, config);

  double a1[2][3] = {{1,2,3},{3,2,1}};
  double a2[2][3] = {{4,5,6},{6,5,4}};

  int numIn=2;
  mpsArray** inVal = new mpsArray* [numIn];
  inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
  inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);
  double* data1 = (double *)( mpsGetData(inVal[0]) );
  double* data2 = (double *)( mpsGetData(inVal[1]) );
  for(int i=0; i<2; i++)
  {
    for(int j=0; j<3; j++)
    {
      mpsIndex subs[] = { i, j };
      mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
      data1[id] = a1[i][j];
      data2[id] = a2[i][j];
    }
  }

  int numOut = 1;
  mpsArray **outVal = new mpsArray* [numOut];

  status = mpsruntime->feval(context,
               "http://localhost:9910/addmatrix/addmatrix",
               numOut, outVal, numIn, (const mpsArray **)inVal);

  if (status==MPS_OK)
  {
    double* out = mpsGetPr(outVal[0]);

 Create a C++ Client

7-11



    for (int i=0; i<2; i++)
    {
      for (int j=0; j<3; j++)
      {
        mpsIndex subs[] = {i, j};
        mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
        std::cout << out[id] << "\t";
      }
      std::cout << std::endl;
    }
  }
  else
  {
    mpsErrorInfo error;
    mpsruntime->getLastErrorInfo(context, &error);
    std::cout << "Error: " << error.message << std::endl;

    switch(error.type)
    {
    case MPS_HTTP_ERROR_INFO:
      std::cout << "HTTP: " 
          << error.details.http.responseCode 
          << ": " << error.details.http.responseMessage
          << std::endl;
    case MPS_MATLAB_ERROR_INFO:
      std::cout << "MATLAB: " << error.details.matlab.identifier 
          << std::endl;
      std::cout << error.details.matlab.message << std::endl;
    case MPS_GENERIC_ERROR_INFO:
      std::cout << "Generic: " 
          << error.details.general.genericErrorMsg 
          << std::endl;
    }
    mpsruntime->destroyLastErrorInfo(&error);
  }

  for (int i=0; i<numIn; i++)
    mpsDestroyArray(inVal[i]);
  delete[] inVal;

  for (int i=0; i<numOut; i++)
    mpsDestroyArray(outVal[i]);
  delete[] outVal;

  mpsruntime->destroyConfig(config);
  mpsruntime->destroyContext(context);
  mpsTerminate();
}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file is stored in
matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps/.

To link your application, the linker needs access to the following files stored in matlabroot/
toolbox/compiler_sdk/mps_client/c/:

Files Required for Linking

Windows UNIX®/Linux Mac OS X
$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

 $arch/lib/libcurl.so $arch/lib/
libcurl.dylib

 $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

 

19 Run the application.

7 Client Programming

7-12



To run your application, add the following files stored in matlabroot/toolbox/
compiler_sdk/mps_client/c/ to the application’s path:

Files Required for Running

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.dll

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch\lib
\libprotobuf.dll

$arch/lib/libcurl.so $arch/lib/
libcurl.dylib

$arch\lib\libcurl.dll $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

 $arch/lib/
libmwcpp11compat.so

 

The client invokes addmatrix function on the server instance and returns the following matrix
at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a C++ Client

7-13





RESTful API JSON Encode and Decode
Functions

8



mps.json.encode
Convert MATLAB data to JSON text using MATLAB Production Server JSON schema

Syntax
text = mps.json.encode(data)
text = mps.json.encode(data,Name,Value)

Description
text = mps.json.encode(data) encodes MATLAB data and returns JSON text in JSON schema
for MATLAB Production Server. You can use this JSON text on multiple platforms to encode content
for MATLAB Production Server.

text = mps.json.encode(data,Name,Value) specifies additional options with one or more
name-value pair arguments for specific input cases. For example, you can decide to encode data in
the large or small format defined for representing data types.

Examples

Convert a Matrix to JSON Schema for MATLAB Production Server

Encode a 3-by-3 magic square in the JSON format.

mps.json.encode(magic(3))

ans =
    '[[8,1,6],[3,5,7],[4,9,2]]'

Convert a Matrix and Specify Format for JSON Schema for MATLAB Production Server

Encode a 3-by-3 magic square in JSON using the large format option.

mps.json.encode(magic(3),'Format','large')

ans =
    '{"mwdata":[8,3,4,1,5,9,6,7,2],"mwsize":[3,3],"mwtype":"double"}'

Convert an Array Containing NaN, Inf, or -Inf to JSON Schema for MATLAB Production
Server

Encode an array containing -Inf, NaN, and Inf in JSON using 'object' in 'NanInfType' option.

mps.json.encode([-Inf NaN Inf],'NaNInfType','object','Format','large')

8 RESTful API JSON Encode and Decode Functions

8-2



ans =
    '{"mwdata":[{"mwdata":"-Inf"},{"mwdata":"NaN"},{"mwdata":"Inf"}], "mwsize":[1,3],"mwtype":"double"}'

Input Arguments
data — MATLAB data that MATLAB Production Server supports
numeric | character | logical | structure | cell

MATLAB data that MATLAB Production Server supports, specified as a numeric, character, logical,
structure, or cell.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: mps.json.encode(data,'Format','large')

Format — Format to encode data
'small' (default) | 'large'

Format to encode MATLAB data, specified as the comma-separated pair consisting of 'Format' and
the format 'small' or 'large'.

The small format is a more simple representation of MATLAB data types in JSON, whereas the
large format is a more generic representation. For more information, see “JSON Representation of
MATLAB Data Types”.

NaNInfType — Format to encode NaN, Inf, and -Inf in data
'string' (default) | 'object'

Format to encode NaN, Inf, and -Inf in data, specified as a comma-separated pair consisting of
'NaNInfType' and the JSON data-types 'string' or 'object'.

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of 'PrettyPrint' and
logical 'true' or 'false'.

PrettyPrint enables better readability for a user when set to true. Syntax is
mps.json.encode(magic(3),'PrettyPrint',true).

Output Arguments
text — JSON-formatted text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a character vector.

See Also
mps.json.decode | mps.json.decoderesponse | mps.json.encoderequest

 mps.json.encode

8-3



Introduced in R2018a

8 RESTful API JSON Encode and Decode Functions

8-4



mps.json.decode
Convert a character vector or string in MATLAB Production Server JSON schema to MATLAB data

Syntax
data = mps.json.decode(text)

Description
data = mps.json.decode(text) parses JSON schema for MATLAB Production Server to convert
it to MATLAB data.

Examples

Decode JSON-Formatted Text for a Matrix

mps.json.decode('[[8,1,6],[3,5,7],[4,9,2]]')

ans =
     8     1     6
     3     5     7
     4     9     2

Decode a Matrix in JSON That Uses large Format

mps.json.decode('{"mwdata":[1,4,3,2],"mwsize":[2,2],"mwtype":"double"}')

ans =
      1     3
      4     2

Input Arguments
text — JSON text following the schema for MATLAB Production Server
character vector (default) | string

JSON following the schema for MATLAB Production Server, specified as a character vector or string.

text can be in various formats like small, large, NaNInfType, and PrettyPrint, as explained in
“Name-Value Pair Arguments” on page 8-3 on the mps.json.encode page.

Output Arguments
data — MATLAB data
any MATLAB data type

MATLAB data decoded from MATLAB Production Server JSON text returned as the data-type encoded
in text.

 mps.json.decode

8-5



See Also
mps.json.decoderesponse | mps.json.encode | mps.json.encoderequest

Introduced in R2018a

8 RESTful API JSON Encode and Decode Functions

8-6



mps.json.encoderequest
Convert MATLAB data in a server request to JSON text using MATLAB Production Server JSON
schema

Syntax
text = mps.json.encoderequest(rhs)
text = mps.json.encoderequest(rhs,Name,Value)

Description
text = mps.json.encoderequest(rhs) encodes the request that is input to the deployed
MATLAB function using JSON schema for MATLAB Production Server. It builds a server request that
includes MATLAB variables and options, such as 'Nargout' and 'OutputFormat', that are needed
to make a call to MATLAB Production Server.

text = mps.json.encoderequest(rhs,Name,Value) specifies additional options with one or
more name-value pair arguments for specific input cases.

Examples

Write MATLAB Production Server Payload

mps.json.encoderequest({[1 2 3 4]})

ans =
    '{"rhs":[[[1,2,3,4]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

Write MATLAB Production Server Payload, and Set Output Parameters

Let rhs = {['Red'], [15], [1 3; 5 7], ['Green']}.

mps.json.encoderequest(rhs, 'Nargout', 3, 'OutputFormat', 'large')

ans =
    '{"rhs":["Red",15,[[1,3],[5,7]],"Green"],"nargout":3,"outputFormat":{"mode":"large","nanType":"string"}}'

Write a MATLAB Function as MATLAB Production Server Payload

Use the MATLAB function horzcat that horizontally concatenates two matrices.

a = [1 2; 5 6];
b = [3 4; 7 8];
mps.json.encoderequest({horzcat(a,b)})

ans =
    '{"rhs":[[[1,2,3,4],[5,6,7,8]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

 mps.json.encoderequest

8-7



Read Response from a sortstudent Function Deployed on MATLAB Production Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function deployed
on MATLAB Production Server using webwrite. In this case, student names and their corresponding
scores are deployed to MATLAB Production Server to the sortstudents function that sorts students
based on their scores. The result returned is the equivalent to calling the function
sortstudents(struct('name', 'Ed', 'score', 83), struct('name', 'Toni',
'score', 91)) from MATLAB.

data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';    

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

result = mps.json.decoderesponse(response);

Input Arguments
rhs — Input arguments for deployed MATLAB function that is called
cell vector of any MATLAB data type supported by MATLAB Production Server

Input arguments for a MATLAB function deployed on MATLAB Production Server that is called,
specified as a cell vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: mps.json.encoderequest(rhs, 'Format', 'large')

Nargout — Number of output arguments for function deployed on MATLAB Production
Server
1 (default) | any positive integer

Number of output arguments for function deployed on MATLAB Production Server, specified as
comma-separated pair consisting of 'Nargout' and number of output arguments.

mps.json.encoderequest(rhs, 'Nargout', 3).

Format — Format to encode rhs
'small' (default) | 'large'

Format to encode rhs, specified as comma-separated pair consisting of 'Format' and the format
'small' or 'large'.

The small format is a simpler representation of MATLAB data types in JSON, whereas the large
format is a more generic representation. For more information, see “JSON Representation of MATLAB
Data Types”.

8 RESTful API JSON Encode and Decode Functions

8-8



NaNInfType — Format to encode NaN, Inf, -Inf in rhs
'string' (default) | 'object'

Format to encode NaN, Inf, -Inf in rhs, specified as comma-separated pair consisting of
'NaNInfType' and JSON data types 'string' and 'object'.

OutputFormat — Format for response from MATLAB function deployed on MATLAB
Production Server
'small' (default) | 'large'

Format for response from MATLAB function deployed on MATLAB Production Server, specified as
comma-separated pair consisting of 'OutputFormat' and the format 'small' or 'large'.

Output format is set using mps.json.encoderequest(rhs, 'OutputFormat', 'large').

OutputNanInfType — Type for response from MATLAB function deployed on MATLAB
Production Server containing NaN, Inf, -Inf
'string' (default) | 'object'

Type for response from MATLAB function deployed on MATLAB Production Server containing NaN,
Inf, -Inf, specified as comma-separated pair consisting of 'OutputNaNInfType' and JSON data
type 'string' and 'object'.

NaN-type for output response is set using mps.json.encoderequest(rhs,
'OutputNaNInfType', 'object').

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of 'PrettyPrint' and
logical 'true' or 'false'. Syntax is mps.json.encoderequest(rhs,'PrettyPrint',true).

Output Arguments
text — JSON text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a character vector.

See Also
mps.json.decode | mps.json.decoderesponse | mps.json.encode

Introduced in R2018a

 mps.json.encoderequest

8-9



mps.json.decoderesponse
Convert JSON text from a server response to MATLAB data

Syntax
lhs = mps.json.decoderesponse(response)
error = mps.json.decoderesponse(response)

Description
lhs = mps.json.decoderesponse(response) reads the JSON payload of the output arguments
returned from a successful MATLAB function call.

error = mps.json.decoderesponse(response) reads the JSON payload of the MATLAB error
thrown from a failed MATLAB function call.

Examples

Read from MATLAB Production Server Payload
mps.json.decoderesponse('{"lhs":[[[1, 2, 3, 4]]]}')

ans =
  1x1 cell array
    {1x4 double}

Read response from a sortstudent function deployed on MATLAB Production Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function deployed
on MATLAB Production Server using webwrite. In this case, student names and their corresponding
scores are deployed to MATLAB Production Server to the sortstudents function that sorts students
based on their scores. The result returned is the equivalent to calling the function
sortstudents(struct('name', 'Ed', 'score', 83), struct('name', 'Toni',
'score', 91)) from MATLAB.
data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';    

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

result = mps.json.decoderesponse(response);

Input Arguments
response — JSON result from a MATLAB function call
char (default)

8 RESTful API JSON Encode and Decode Functions

8-10



JSON result from a MATLAB function call specified as JSON text.

Output Arguments
lhs — Cell vector of output arguments
Cell vector

Cell vector of output arguments that are from a MATLAB function called from MATLAB Production
Server.

error — Generated output when request results in a MATLAB error
struct array

Generated output when request to MATLAB function called from MATLAB Production Server results
in a MATLAB error returned as a struct array.

See Also
mps.json.decode | mps.json.encode | mps.json.encoderequest

Introduced in R2018a

 mps.json.decoderesponse

8-11





Persistence Functions

9



mps.cache.Controller
Manage the life cycle of a persistence service in a MATLAB testing environment

Description
mps.cache.Controller is used to manage the life cycle of a persistence service in a MATLAB
testing environment. You can perform various actions such as starting and stopping the service using
the object.

Creation
Create a mps.cache.Controller object using mps.cache.control.

Properties
ActiveConnection — Connection indicator
True | False

This property is read-only.

Indicates whether the connection to the persistence provider is active or not. The value is True when
the persistence service is attached to the MATLAB session, otherwise it is False.
Example: ActiveConnection: False

ManageService — Service management indicator
True | False | Unknown

This property is read-only.

Indicates whether the controller object is managing the persistence service or not. ManageService
is True if the persistence service is started using the controller's start method and False if the
MATLAB session is attached to the persistence service using the controller's attach method. In all
other cases, the value is set to Unknown.

If ManageService is True, destroying the controller object via delete or exiting MATLAB will stop
the persistence service.
Example: ManageService: True

Host — Host name
character vector

This property is read-only.

Name of the system hosting the persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.

9 Persistence Functions

9-2



Example: Host: 'localhost'

Port — Port number
positive scalar

This property is read-only.

Port number for persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.
Example: Port: 4519

ProviderName — Name of persistence provider
'Redis' | 'MatlabTest'

This property is read-only.

Name of the persistence provider.

Currently, Redis™ is the only supported persistence provider.

You can also use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, the provider name is displayed as 'MatlabTest'.
Example: ProviderName: 'Redis'
Example: ProviderName: 'MatlabTest'

ConnectionName — Name of connection
character vector | string

This property is read-only.

Name of connection to persistence service.
Example: ConnectionName: 'myRedisConnection'

Folder* — Storage folder path
character vector

This property is read-only.

Storage folder path. The folder displayed is used as a database.

* This property is displayed only when you create a controller that uses MATLAB as a persistence
provider.
Example: Folder: 'c:\tmp'

Object Functions
mps.cache.control Create a persistence service controller object
start Start a persistence service and attach it a to MATLAB session
stop Stop a persistence service and detach it from a MATLAB session
restart Restart a persistence service and attach it to a MATLAB session

 mps.cache.Controller

9-3



attach Connect a MATLAB session to a persistence service that is already running
detach Disconnect MATLAB session from a persistence service that is already running
ping Test whether the persistence service is reachable
version Version number for persistence provider

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl = 

  Controller with properties:

    ActiveConnection: False
       ManageService: Unknown
                Host: 'localhost'
                Port: 4519
          Operations: "read | write | create | update"
        ProviderName: 'Redis'
      ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp') 

mctrl = 

  Controller with properties:

    ActiveConnection: False
       ManageService: Unknown
              Folder: 'c:\tmp'
          Operations: "read | write | create | update"
        ProviderName: 'MatlabTest'
      ConnectionName: 'myMATFileConnection'

See Also
mps.cache.DataCache

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-4



mps.cache.DataCache
Represent cache concept in MATLAB code

Description
mps.cache.DataCache represents the concept of cache in MATLAB code. It is an abstract class that
serves as a superclass for each persistence provider-specific data cache class.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Creation
Create a persistence provider-specific subclass of mps.cache.DataCache using
mps.cache.connect.

Properties
See provider-specific subclasses for properties.

Object Functions
mps.cache.connect Connect to cache, or create a cache if it doesn't exist
bytes Return the number of bytes of storage used by value stored at each key
clear Remove all keys and values from cache
flush Write all locally modified keys to the persistence service
get Fetch values of keys from cache
getp Get the value of a public cache property
isKey Determine if the cache contains specified keys
keys Get all keys from cache
length Number of key-value pairs in the data cache
purge Flush all local data to the persistence service
put Write key-value pairs to cache
remove Remove keys from cache
retain Store remote keys from cache locally or return locally stored keys

Examples
Connect to a Redis Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection')

 mps.cache.DataCache

9-5



c = 

RedisCache with properties:

          Host: 'localhost'
          Port: 4519
          Name: 'myCache'
    Operations: "read | write | create | update"
     LocalKeys: {}
    Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

See Also
mps.cache.Controller

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-6



mps.sync.TimedMATFileMutex
Represent a MAT-file persistence service mutex

Description
mps.sync.TimedMATFileMutex is synchronization primitive used to protect data in a MAT-file
database from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedMATFileMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of lock
character vector

This property is read-only.

Name of advisory lock, specified as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedMATFileMutex

9-7



Examples
Create a MAT-File Lock Object
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')
start(mctrl) 
lk = mps.sync.mutex('myMATFileMutex','Connection','myMATFileConnection')

lk = 

  TimedMATFileMutex with properties:

        Expiration: 10
    ConnectionName: 'myMATFileConnection'
         MutexName: 'myMATFileMutex'

See Also
acquire | mps.sync.TimedRedisMutex | mps.sync.mutex | own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-8



mps.sync.TimedRedisMutex
Represent a Redis persistence service mutex

Description
mps.sync.TimedRedisMutex is a synchronization primitive used to protect data in a Redis
persistence service from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedRedisMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of mutex
character vector

This property is read-only.

Name of mutex, returned as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

 mps.sync.TimedRedisMutex

9-9



Examples
Create a Redis Lock Object

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk = 

  TimedRedisMutex with properties:

        Expiration: 10
    ConnectionName: 'myRedisConnection'
         MutexName: 'myMutex'

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.mutex | own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-10



acquire
Acquire advisory lock on persistence service mutex

Syntax
TF = acquire(lk,timeout)

Description
TF = acquire(lk,timeout) acquires an advisory lock and returns a logical 1 (true) if the lock
was successful, and a logical 0 (false) otherwise. If the lock is unavailable, acquire will continue
trying to acquire it for timeout seconds.

Examples

Apply Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

TF =

  logical

   1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

timeout — Retry duration
positive integer

Duration after which to retry acquiring lock.

 acquire

9-11



Example: 20

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if acquiring the advisory lock was successful, and a logical 0 (false)
otherwise.

See Also
mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex | own |
release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-12



attach
Connect a MATLAB session to a persistence service that is already running

Syntax
attach(ctrl)

Description
attach(ctrl) connects a MATLAB session to a persistence service that is already running.

Examples

Connect a MATLAB Session to a Persistence Service

Attach MATLAB code to a persistence service.

Start a persistence service outside your MATLAB session from system command line using or using
the dashboard. Assuming your started the service using a connection name
myOutsideRedisConnection at port 8899, attach your MATLAB session to it from the
MATLABdesktop.
ctrl = mps.cache.control('myOutsideRedisConnection','Redis','Port',8899);
attach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: attach(ctrl)

See Also
detach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 attach

9-13



bytes
Return the number of bytes of storage used by value stored at each key

Syntax
b = bytes(c,keys)

Description
b = bytes(c,keys) returns the number of bytes of storage used by value stored at each key.

Examples

Get the Number of Bytes of Storage Used by a Value in the Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and then get the number of bytes of storage used by a value stored
at each key in the cache. Represent the keys and the bytes used by each value of key as a MATLAB
table.
put (c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
b = bytes(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), bytes(c,keys(c))','VariableNames',{'Keys','Bytes'})

b =

    72    72    72    80   264

tt =

  5×2 table

       Keys       Bytes
    __________    ______

    'keyFive'      264  
    'keyFour'       80  
    'keyOne'        72  
    'keyThree'      72  
    'keyTwo'        72 

Input Arguments
c — Data cache
persistence provider specific data cache object

9 Persistence Functions

9-14



A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A list of all the keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
b — Number of bytes
numeric row vector

Number of bytes used by each value associated with a key, returned as a numeric row vector.

The byte counts in the output vector appear in the same order as the corresponding input keys. b(i)
is the byte count for keys(i).

See Also
get | keys | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 bytes

9-15



clear
Remove all keys and values from cache

Syntax
n = clear(c)

Description
n = clear(c) removes all keys and values from cache and returns the number of keys cleared from
the cache in n.

clear removes both local and remote keys and values.

Examples

Clear All Keys and Values from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Clear the cache and check if it is empty.

n = clear(c)
k = keys(c)

n =

  int64

9 Persistence Functions

9-16



   5

k =

  0×1 empty cell array

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
n — Number of key-value pairs
integer

Number of key-value pairs removed, returned as an integer.
Example: 5

See Also
flush | keys | purge | put | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 clear

9-17



detach
Disconnect MATLAB session from a persistence service that is already running

Syntax
detach(ctrl)

Description
detach(ctrl) disconnects MATLAB session from a persistence service that is already running.

Examples

Disconnect MATLAB Code

Disconnect MATLAB code from a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can connect MATLAB code to it. You can
then disconnect the code from the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
attach(ctrl)
detach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: detach(ctrl)

See Also
attach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-18



flush
Write all locally modified keys to the persistence service

Syntax
modKeys = flush(c)

Description
modKeys = flush(c) writes all locally modified data in c to the persistence service and returns a
list of keys that have been modified.

flush does not clear the list of retained keys.

Examples

Write All Locally Modified Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Retain a single key locally and verify that it shows up as a local key in the cache object.

retain(c,'keyOne')
display(c)

c = 

 flush

9-19



RedisCache with properties:

          Host: 'localhost'
          Port: 4519
          Name: 'myCache'
    Operations: "read | write | create | update"
     LocalKeys: {'keyOne'}
    Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Modify the local key and flush it to the remote cache. Display the keys and values in the cache as a
MATLAB table.

put(c,'keyOne',rand(3))
modKeys = flush(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

modKeys =

  1×1 cell array

    {'keyOne'}

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [3×3 double]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
modKeys — Modified keys
cell array of character vectors

A list of the modified keys that were written to the persistence service, returned as a cell array of
character vectors.

9 Persistence Functions

9-20



See Also
clear | keys | purge | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 flush

9-21



get
Fetch values of keys from cache

Syntax
values = get(c,keys)

Description
values = get(c,keys) fetches values of keys specified by keys from the cache specified by c.
Values are returned in the same order as input variables as a cell array.

Examples

Get Values for Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all the keys and associated values and display them as a MATLAB table.
k = keys(c)
v = get(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

k =

  5×1 cell array

    {'keyFive' }
    {'keyFour' }
    {'keyOne'  }
    {'keyThree'}
    {'keyTwo'  }

v =

  1×5 cell array

    {[10]}    {[20]}    {[30]}    {1×2 double}    {5×5 double}

tt =

9 Persistence Functions

9-22



  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A cell array of keys whose values you want to retrieve from cache.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
values — Values
cell array

A list of values associated with keys, returned as a cell array.

See Also
getp | keys | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 get

9-23



getp
Get the value of a public cache property

Syntax
value = getp(c,property)

Description
value = getp(c,property) gets the value of a public cache property.

Ordinarily, you would be able to access the public properties of a cache object using the dot notation.
For example: c.Connection. However, all cache objects use dot reference and dot assignment to
refer to keys stored in the cache rather than cache object properties. Therefore, c.Connection
refers to a key named Connection in the cache instead of the cache's Connection property.

There is no setp method since all cache properties are read-only.

Examples

Get the Value of a Named, Public, Hidden Property

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retrieve the connection name.

getp(c,'Connection')

ans =

    'myRedisConnection'

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

9 Persistence Functions

9-24



property — Property name
character vector

Property name, specified as a character vector. The common public cache properties are Name,
LocalKeys, and Connection. Provider-specific cache objects may have additional properties. For
example, mps.cache.RedisCache has the properties Host and Port.
Example: 'Connection'

Output Arguments
value — Property value
valid value

A valid property value.

See Also
get | keys | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 getp

9-25



isKey
Determine if the cache contains specified keys

Syntax
TF = isKey(c,keys)

Description
TF = isKey(c,keys) returns a logical 1 (true) if c contains the specified key, and returns a
logical 0 (false) otherwise.

If keys is an array that specifies multiple keys, then TF is a logical array of the same size, and TF{i}
is true if keys{i} exists in cache c.

Examples

Determine if the Cache Contains Specified Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Determine if the cache contains specified keys.

TF = isKey(c,{'keyOne','keyTW00','keyTREE','key4','keyFive'})

TF =

  1×5 logical array

   1   0   0   0   1

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

9 Persistence Functions

9-26



keys — Keys to search for
character vector | string | cell array of character vectors or strings

Keys to search for in the cache object c, specified as a character vector, string, or cell array of
character vectors or strings. To search for multiple keys, specify keys as a cell array.
Example: {'keyOne','keyTW00','keyTREE','key4','keyFive'}

Output Arguments
TF — Logical value
logical array

A logical array of the same size as keys indicating which specified keys were found in the data cache.
TF has a logical 1 (true) if c contains a key specified by keys, and a logical 0 (false) otherwise.

See Also
get | keys | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 isKey

9-27



keys
Get all keys from cache

Syntax
k = keys(c)

Description
k = keys(c) returns a list of all the keys in a data cache as a cell array.

Examples

Get Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all keys.

k = keys(c)

k =

  5×1 cell array

    {'keyFive' }
    {'keyFour' }
    {'keyOne'  }
    {'keyThree'}
    {'keyTwo'  }

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

9 Persistence Functions

9-28



Output Arguments
k — Keys
cell array of character vectors

Keys from cache, returned as a cell array of character vectors.

See Also
bytes | get | isKey | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 keys

9-29



length
Number of key-value pairs in the data cache

Syntax
num = length(c)
num = length(c,location)

Description
num = length(c) returns the total number of key-value pairs in the data cache c.

num = length(c,location) returns the numbers of key-value pairs in the data cache c stored
remotely or locally as specified by location.

Examples

Count the Number of Key-Value Pairs

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retain a few keys locally.
retain(c, {'keyOne','keyTwo'})

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Count the number of keys-value pairs.

numTotal = length(c)
numRemote = length(c,'Remote')
numLocal = length(c,'Local')

numTotal =

  int64

   5

numRemote =

  int64

   3

9 Persistence Functions

9-30



numLocal =

  int64

   2

Since keyOne and keyTwo were retained before being written to the cache, they were never written
to the persistence service. They are stored locally until flushed or purged to the persistence service.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

location — Location name
'Remote' | 'Local'

Location of keys specified as an enumerated member of the class mps.cache.Location. The valid
location options are either 'Remote' or 'Local'.
Example: 'Remote'

Output Arguments
num — Number of keys
integer

Total number of key-value pairs in the data cache or the number stored remotely or locally, returned
as an integer.

See Also
bytes | get | isKey | keys | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 length

9-31



mps.cache.connect
Connect to cache, or create a cache if it doesn't exist

Syntax
c = mps.cache.connect(cacheName)
c = mps.cache.connect(cacheName,'Connection',connectionName)

Description
c = mps.cache.connect(cacheName) connects to a cache when there's a single connection to a
persistence service.

c = mps.cache.connect(cacheName,'Connection',connectionName) connects to a cache
using the connection specified by connectionName when there are multiple connections to a
persistence service.

Examples

Create a Cache When There is a Single Connection to a Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

When you have a single connection, you do not need to specify the connection name to
mps.cache.connect.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)
c = mps.cache.connect('myCache');

c = 

RedisCache with properties:

          Host: 'localhost'
          Port: 4519
          Name: 'myCache'
    Operations: "read | write | create | update"
     LocalKeys: {}
    Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Create a Cache When There are Multiple Connections to a Persistence Service

When you have multiple connections to a persistence service, create a cache by specifying the
connection name associated with the service you want to use.

9 Persistence Functions

9-32



ctrl_1 = mps.cache.control('myRedisConnection1','Redis','Port',4519)
start(ctrl_1)
ctrl_2 = mps.cache.control('myRedisConnection2','Redis','Port',4520)
start(ctrl_2)
c = mps.cache.connect('myCache','Connection','myRedisConnection1')

c = 

RedisCache with properties:

          Host: 'localhost'
          Port: 4519
          Name: 'myCache'
    Operations: "read | write | create | update"
     LocalKeys: {}
    Connection: 'myRedisConnection1'

Use getp instead of dot notation to access properties.

Input Arguments
cacheName — Cache name to connect to or create
character vector

Cache name to connect to or create, specified as a character vector.
Example: 'myCache'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

Output Arguments
c — Data cache object
persistence provider-specific data cache object

A persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

See Also
mps.cache.DataCache

Introduced in R2018b

 mps.cache.connect

9-33



mps.cache.control
Create a persistence service controller object

Syntax
ctrl = mps.cache.control(connectionName,Provider,'Port',num)
ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath)

Description
ctrl = mps.cache.control(connectionName,Provider,'Port',num) creates a persistence
service controller object using a connection to a persistence service specified by connectionName, a
persistence provider specified by Provider, and a port number num for the service.

You cannot compile and deploy this function on the server. This function is available only for testing.

ctrl = mps.cache.control(connectionName,Provider,'Folder',folderPath) creates a
persistence service controller object that uses a folder specified by folderPath as a database.

Use this syntax when you want to use MATLAB as a persistence provider for testing purposes.

You cannot compile and deploy this function on the server. This function is available only for testing.

Examples
Create a Redis Service Controller

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl = 

  Controller with properties:

    ActiveConnection: False
       ManageService: Unknown
                Host: 'localhost'
                Port: 4519
          Operations: "read | write | create | update"
        ProviderName: 'Redis'
      ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp') 

mctrl = 

  Controller with properties:

    ActiveConnection: False
       ManageService: Unknown
              Folder: 'c:\tmp'

9 Persistence Functions

9-34



          Operations: "read | write | create | update"
        ProviderName: 'MatlabTest'
      ConnectionName: 'myMATFileConnection'

Input Arguments
connectionName — Name of the connection
character vector | string

Name of the connection to the persistence service, specified as a character vector.

The connectionName links a MATLAB session to a persistence service.
Example: 'myRedisConnection'

Provider — Name of the persistence provider
'Redis' | 'MatlabTest'

Name of the persistence provider, specified as a character vector.

You can use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, specify the provider name as 'MatlabTest'.
Example: 'Redis'
Example: 'MatlabTest'

num — Port number
positive scalar

Port number for the persistence service.
Example: 'Port', 4519

folderPath — Storage folder path
character vector

Storage folder path, specified as a character vector.

Specify this input only when you want to use MATLAB as a persistence provider for testing purposes.
A folder specified by folderPath serves as a database.
Example: 'Folder','c:\tmp'

Output Arguments
ctrl — Persistence provider service controller object
mps.cache.Controller object

Persistence provider service controller returned as a mps.cache.Controller object.

See Also
mps.cache.Controller | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

 mps.cache.control

9-35



Introduced in R2018b

9 Persistence Functions

9-36



mps.sync.mutex
Create a persistence service mutex

Syntax
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value)

Description
lk = mps.sync.mutex(mutexName,'Connection',connectionName,Name,Value) creates a
database advisory lock object.

Examples

Create a Redis Mutex

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk = 

  TimedRedisMutex with properties:

        Expiration: 10
    ConnectionName: 'myRedisConnection'
         MutexName: 'myMutex'

Input Arguments
mutexName — Mutex name
character vector

Name of persistence service mutex, specified as a character vector.
Example: 'myMutex'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

 mps.sync.mutex

9-37



Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Expiration', 10

Expiration — Time in seconds
positive integer

Expiration time in seconds after the lock is acquired.

Other clients will be able to acquire the lock even if you do not release it.
Example: 'Expiration', 10

Output Arguments
lk — Mutex object
persistence service mutex object

A persistence service mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use MATLAB as your persistence provider, lk will be a
mps.sync.TimedMATFileMutex object.

Tips
• A persistence service mutex allows multiple clients to take turns using a shared resource. Each

cooperating client creates a mutex object with the same name using a connection to a shared
persistence service. To gain exclusive access to the shared resource, a client attempts to acquire a
lock on the mutex. When the client finishes operating on the shared resource, it releases the lock.
To prevent lockouts should the locking client crash, all locks expire after a certain amount of time.

• Acquiring a lock on a mutex prevents other clients from acquiring a lock on that mutex but it does
not lock the persistence service or any keys or values stored in the persistence service. These
locks are advisory only and are meant to be used by cooperating clients intent of preventing data
corruption. Rogue clients will be able to corrupt or delete data if they do not voluntarily respect
the mutex locks.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-38



own
Check ownership of advisory lock on a persistence service mutex object

Syntax
TF = own(lk)

Description
TF = own(lk) returns a logical 1 (true) if you own an advisory lock on the persistence service
mutex, and returns a logical 0 (false) otherwise.

Examples

Check If You Own the Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Check if you own the advisory lock.

TF = own(lk)

TF =

  logical

   0

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

 own

9-39



TF has a logical 1 (true) if you own the advisory lock on the persistence service mutex, and a
logical 0 (false) otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex |
release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-40



ping
Test whether the persistence service is reachable

Syntax
ping(ctrl)

Description
ping(ctrl) tests whether the persistence service is reachable. In order to ping a persistence
service, it must be started and attached to yourMATLAB session.

Examples

Ping Persistence Service

Test whether the persistence service is reachable.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can ping the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
ping(ctrl)

Sending ping to Redis on localhost:4519.
Redis service running on localhost:4519.

ans =

  logical

   1

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: ping(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

 ping

9-41



Introduced in R2018b

9 Persistence Functions

9-42



purge
Flush all local data to the persistence service

Syntax
purgedKeys = purge(c)

Description
purgedKeys = purge(c) flushes all local data to the persistence service and removes it locally.

Examples

Flush All Local Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally. For more information, see retain.
retain(c, {'keyOne','keyTwo'})

Modify the local keys and purge the data. Display the keys and values in the cache as a MATLAB
table.

put(c,'keyOne',rand(3),'keyTwo', eye(10))
purgedKeys = purge(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})
display(c)

purgedKeys =

  2×1 cell array

    {'keyOne'}
    {'keyTwo'}

tt =

  5×2 table

       Keys           Values    
    __________    ______________

 purge

9-43



    'keyFive'     [ 5×5  double]
    'keyFour'     [ 1×2  double]
    'keyOne'      [ 3×3  double]
    'keyThree'    [          30]
    'keyTwo'      [10×10 double]

c = 

RedisCache with properties:

          Host: 'localhost'
          Port: 4519
          Name: 'myCache'
    Operations: "read | write | create | update"
     LocalKeys: {}
    Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

Output Arguments
purgedKeys — Purged keys
cell array of character vectors

List of keys that were written to the persistence service, returned as a cell array of character vectors.

See Also
clear | flush | keys | length | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-44



put
Write key-value pairs to cache

Syntax
put(c,key1,value1,...,keyN,valueN)
put(c,keySet,valueSet)

Description
put(c,key1,value1,...,keyN,valueN) writes key-value pairs to cache. You can store any type
of MATLAB data in a cache.

put(c,keySet,valueSet) writes key-value pairs to cache with keys from by keySet, each mapped
to a corresponding value from valueSet. The input arguments keySet and valueSet must have the
same number of elements, with keySet having elements that are unique.

Examples

Write Series of Key-Value Pairs to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

 put

9-45



Write Set of Keys and Corresponding Values to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a set of keys and corresponding values to the cache and display them as a MATLAB table.

keySet = {'keyOne','keyTwo','keyThree','keyFour','keyFive'}
valueSet = {10, 20, 30, [400 500], magic(5)}
put(d,keySet,valueSet)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Write Object to Cache

Create a class whose object you want to write to the Redis cache.

classdef BasicClass
    properties
        Value = pi;
    end
    methods
        function r = roundOff(obj)
            r = round([obj.Value],2);
        end
        function r = multiplyBy(obj,n)
            r = [obj.Value] * n;
        end
    end
end

Create an object of the class and assign a value to the Value property,

a = BasicClass
a.Value = 4

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

9 Persistence Functions

9-46



ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a key and the object that you created to the cache and retrieve the object.
put(c,'objKey',a)
objVal = get(c,'objKey')

objVal = 

  BasicClass with properties:

    Value: 4

The output shows that there is no loss of information during writing an object to the cache and
retrieving the object from the cache. The retrieved object contains the same information as the input
object.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

key — Key
character vector

Key to add, specified as a character vector.
Example: 'keyFour'

value — Value
array

Value, specified as an array. value can be any valid MATLAB data type, including MATLAB objects.
Example: [400, 500]

keySet — Keys
cell array of character vectors

Keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

valueSet — Values
cell array

Values, specified as comma-separated cell array. Each value may be any valid MATLAB data type,
including MATLAB objects.
Example: {10, 20, 30, [400 500], magic(5)}

 put

9-47



See Also
bytes | clear | get | keys | length | remove

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-48



release
Release advisory lock on persistence service mutex

Syntax
TF = release(lk)

Description
TF = release(lk) releases an advisory lock on a persistence service mutex. If the lock expires
before you release it, release returns a logical 0 (false). If this occurs, it may indicate potential
data corruption.

Examples

Release Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

Release lock.

TF = release(lk)

TF =

  logical

   1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, lk will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, lk will be
a mps.sync.TimedMATFileMutex object.

 release

9-49



Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if releasing the advisory lock was successful, and a logical 0 (false)
otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex |
own

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-50



remove
Remove keys from cache

Syntax
num = remove(c,keys)

Description
num = remove(c,keys) removes keys and associated values from cache. There is no way to
recover removed keys.

Examples

Remove Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

  5×2 table

       Keys          Values   
    __________    ____________

    'keyFive'     [5×5 double]
    'keyFour'     [1×2 double]
    'keyOne'      [        10]
    'keyThree'    [        30]
    'keyTwo'      [        20]

Remove two keys from cache c and display the remaining keys and values in the cache as a MATLAB
table.

num = remove(c,{'keyThree','keyFour'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

num =

  int64

 remove

9-51



   2

tt =

  3×2 table

      Keys          Values   
    _________    ____________

    'keyFive'    [5×5 double]
    'keyOne'     [        10]
    'keyTwo'     [        20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

keys — Keys to remove
cell array of character vectors

Keys to remove from cache, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
num — Number of keys removed
integer

Number of keys removed, returned as an integer.

See Also
clear | get | keys | purge | put | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-52



restart
Restart a persistence service and attach it to a MATLAB session

Syntax
restart(ctrl)

Description
restart(ctrl) restarts a persistence service represented by ctrl. You only restart a services you
originally started using start.

Examples

Restart a Persistence Provider

Restart a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then restart it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
restart(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: restart(ctrl)

See Also
attach | detach | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 restart

9-53



retain
Store remote keys from cache locally or return locally stored keys

Syntax
retain(c,remoteKeys)
localKeys = retain(c)

Description
retain(c,remoteKeys) stores keys from cache locally.

localKeys = retain(c) returns a cell array of keys stored locally.

Examples

Store Keys from Cache Locally and Check Local Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally and check local keys.
retain(c,{'keyThree','keyFour'})
localKeys = retain(c)

localKeys =

  1×2 cell array

    {'keyThree'}    {'keyFour'}

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.
Example: c

9 Persistence Functions

9-54



remoteKeys — Keys
cell array of character vectors

Remote keys to store locally, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
localKeys — Keys
cell array of character vectors

Locally stored keys, returned as a cell array of character vectors.

Tips
• As a performance optimization you may choose to temporarily store a set of keys and their values

in your MATLAB session or worker instead of the persistence service. Keys retained in the this
fashion will be automatically written to the persistence service (see flush) when MATLAB exits or
when the first function call returns.

• Manually control the lifetime of retained keys with the flush and purge methods.

See Also
clear | flush | purge | remove

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 retain

9-55



start
Start a persistence service and attach it a to MATLAB session

Syntax
start(ctrl)

Description
start(ctrl) starts a persistence service represented by ctrl and attaches it to a current MATLAB
session.

• To make a persistence service available in a MATLAB session, the service must be started and
then attached to the MATLAB session. start performs both these actions.

• If a persistence service has already been started, there is no need to call start. Use attach
instead.

• start and stop, attach and detach must be used in pairs.
• If you connected a persistence service to your MATLAB session with start, you must disconnect

with stop.
• If you connected with attach, you must disconnect with detach.

Examples
Start a Persistence Service

Start a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: start(ctrl)

See Also
attach | detach | restart | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

9 Persistence Functions

9-56



Introduced in R2018b

 start

9-57



stop
Stop a persistence service and detach it from a MATLAB session

Syntax
stop(ctrl)

Description
stop(ctrl) stops a persistence service represented by ctrl and detaches it from a current
MATLAB session.

• You cannot stop a service that has not been started.
• You can only stop a service that has been started using start.
• Exiting MATLAB will automatically call stop on all persistence services that were started using

start.

Examples

Stop a Persistence Service

Stop a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then stop it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
stop(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: stop(ctrl)

See Also
attach | detach | restart | start

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

9 Persistence Functions

9-58



version
Version number for persistence provider

Syntax
version(ctrl)

Description
version(ctrl) returns the version number for the persistence provider. In order to get the version
number of the persistence provider, the persistence service must be started and attached to
yourMATLAB session.

Examples

Get Version Number

Get the version number of the persistence provider that the persistence service is connected to.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can get the version number.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
version(ctrl)

Redis version: 3.0.504

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: version(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 version

9-59




	Deployable Archive Creation
	Create Deployable Archive for MATLAB Production Server
	Create MATLAB Function
	Create Deployable Archive with Production Server Compiler App
	Customize Application and Its Appearance
	Package Application

	Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server
	Create Function In MATLAB
	Create Deployable Archive with Excel Integration Using Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application
	Install the Deployable Archive with Excel Integration


	MATLAB Production Server Integration Testing
	Write a Test Client
	Test Client Data Integration Against MATLAB
	Create a MATLAB Function
	Prepare for Testing
	Test Using RESTful API
	Testing Using Java Client Application


	MATLAB Production Server Excel Add-In
	Data Marshaling Rules
	Default Marshaling Rules
	Change Rules for Marshaling Data into MATLAB
	Change Rules for Marshaling Data into Excel


	MATLAB Production Server Excel Add-In
	XLA File Not Generated
	Server Configuration Add-in Not Enabled
	Error Using a Variable Number of Outputs

	Functions
	compiler.build.productionServerArchive
	compiler.build.ProductionServerArchiveOptions
	compiler.build.Results
	productionServerCompiler

	Apps
	Production Server Compiler

	Client Programming
	Create a Java Client Using the MWHttpClient Class
	Create a C# Client Using MWHttpClient
	Create a Python Client
	Create a C++ Client

	RESTful API JSON Encode and Decode Functions
	mps.json.encode
	mps.json.decode
	mps.json.encoderequest
	mps.json.decoderesponse

	Persistence Functions
	mps.cache.Controller
	mps.cache.DataCache
	mps.sync.TimedMATFileMutex
	mps.sync.TimedRedisMutex
	acquire
	attach
	bytes
	clear
	detach
	flush
	get
	getp
	isKey
	keys
	length
	mps.cache.connect
	mps.cache.control
	mps.sync.mutex
	own
	ping
	purge
	put
	release
	remove
	restart
	retain
	start
	stop
	version


